chaos/scripts/index.js

137 lines
3.5 KiB
JavaScript

'use strict';
import { html } from 'the-dom';
import { randomNumber, randomColor } from './utils';
const { body, create } = html(document);
const content = body.find('#content');
const plotting = body.find('#plotting');
const ctx = plotting.node.getContext('2d');
const padding = 40; // padding between the canvas edges and the points
let image, width, height;
let lastUpdate = -Infinity;
/**
* Create a fractal of given width, height, based on
* a polygon of given amount of vertices, using the
* chaos game applied with given fraction
*
* @param {number} width Fractal width
* @param {number} height Fractal height
* @param {number} fraction Fraction to use
* @param {Array} colors Color of each vertex
* @return {ImageData} Generated pixel data
*/
const chaos = (width, height, fraction, colors) => {
const cx = Math.floor(width / 2);
const cy = Math.floor(height / 2);
const radius = Math.min(cx, cy);
const count = colors.length;
const vertices = [];
const angleStep = 2 * Math.PI / count;
let initialAngle;
// creating 0-width image data will throw an error
if (width <= 0 || height <= 0) {
return ctx.createImageData(1, 1);
}
const image = ctx.createImageData(width, height);
const data = image.data;
// we will rotate around an inscribed circle to calculate
// the vertices' positions. We adapt the initial angle so
// that usual polygons look better
if (count === 3) {
initialAngle = -Math.PI / 2;
} else if (count === 4) {
initialAngle = Math.PI / 4;
} else {
initialAngle = 0;
}
for (let i = 0; i < count; i += 1) {
let current = angleStep * i + initialAngle;
vertices.push([
Math.floor(Math.cos(current) * radius + cx),
Math.floor(Math.sin(current) * radius + cy)
]);
}
// now we apply the chaos algorithm:
// for any point, the next point is a `fraction` of the
// distance between it and a random vertex
let point = vertices[0];
let iterations = 200000;
let drop = 1000;
while (iterations--) {
const vertexNumber = randomNumber(0, count);
const vertex = vertices[vertexNumber], color = colors[vertexNumber];
point = [
Math.floor((point[0] - vertex[0]) * fraction + vertex[0]),
Math.floor((point[1] - vertex[1]) * fraction + vertex[1])
];
// skip the first 1000 points
if (drop === 0) {
const i = (point[1] * width + point[0]) * 4;
data[i] = color[0];
data[i + 1] = color[1];
data[i + 2] = color[2];
data[i + 3] = 255;
} else {
drop--;
}
}
return image;
};
/**
* Render the scene, recalculating the points
* positions if they need to
*
* @return {null}
*/
const render = () => {
// only recalculate every 16.67 ms
if (+new Date() - lastUpdate > 16.67) {
image = chaos(
width - 2 * padding, height - 2 * padding, 1/2,
[[255, 0, 0], [0, 255, 0], [0, 0, 255]]
);
lastUpdate = +new Date();
}
ctx.clearRect(0, 0, width, height);
ctx.putImageData(
image, padding, padding
);
};
/**
* Resize the canvas to fit the new
* window size and redraw the scene
*
* @return {null}
*/
const resize = () => {
width = content.node.clientWidth;
height = content.node.clientHeight;
plotting.setAttr('width', width);
plotting.setAttr('height', height);
render();
};
window.onresize = resize;
resize();