Use best parameters as found by experimentation

This commit is contained in:
Mattéo Delabre 2019-12-18 09:41:50 -05:00
parent 5cb087d971
commit 0769a61fcf
Signed by: matteo
GPG Key ID: AE3FBD02DC583ABB
1 changed files with 8 additions and 5 deletions

View File

@ -4,16 +4,19 @@ import torch
from matplotlib import pyplot
from mpl_toolkits.axisartist.axislines import SubplotZero
torch.manual_seed(42)
torch.manual_seed(57)
# Number of symbols to learn
order = 16
# Initial value for the learning rate
initial_learning_rate = 0.1
# Number of batches to skip between every loss report
loss_report_batch_skip = 50
# Size of batches
batch_size = 32
batch_size = 2048
# File in which the trained model is saved
output_file = 'output/constellation-order-{}.pth'.format(order)
@ -30,8 +33,8 @@ pyplot.show(block=False)
# Train the model with random data
model = constellation.ConstellationNet(
order=order,
encoder_layers_sizes=(8, 4),
decoder_layers_sizes=(4, 8),
encoder_layers_sizes=(8, 4,),
decoder_layers_sizes=(4, 8,),
channel_model=constellation.GaussianChannel()
)
@ -52,7 +55,7 @@ total_change = float('inf')
# Optimizer settings
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
optimizer = torch.optim.Adam(model.parameters(), lr=initial_learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, verbose=True,
factor=0.25,