Add experiment code
This commit is contained in:
parent
7efcbd3948
commit
0dfbed1bb7
|
@ -0,0 +1,184 @@
|
||||||
|
import constellation
|
||||||
|
from constellation import util
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import time
|
||||||
|
import pickle
|
||||||
|
|
||||||
|
# Number of seconds to wait between each checkpoint
|
||||||
|
time_between_checkpoints = 10 * 60 # 10 minutes
|
||||||
|
|
||||||
|
# Format for checkpoint files
|
||||||
|
checkpoint_path = 'output/experiment-{}.pkl'
|
||||||
|
|
||||||
|
|
||||||
|
def train_with_parameters(
|
||||||
|
order,
|
||||||
|
layer_sizes,
|
||||||
|
initial_learning_rate,
|
||||||
|
batch_size
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Report final loss after fully learning a constellation with given
|
||||||
|
parameters.
|
||||||
|
|
||||||
|
:param order: Number of symbols in the constellation.
|
||||||
|
:param layer_sizes: Shape of the encoder’s hidden layers. The
|
||||||
|
size of this sequence is the number of hidden layers, with each element
|
||||||
|
being a number which specifies the number of neurons in its channel. The
|
||||||
|
decoder’s hidden layers will be of the same shape but reversed.
|
||||||
|
:param initial_learning_rate: Initial learning rate used for the optimizer.
|
||||||
|
:param batch_size: Number of training examples for each training batch
|
||||||
|
expressed as a multiple of the constellation order.
|
||||||
|
"""
|
||||||
|
model = constellation.ConstellationNet(
|
||||||
|
order=order,
|
||||||
|
encoder_layers_sizes=layer_sizes,
|
||||||
|
decoder_layers_sizes=layer_sizes[::-1],
|
||||||
|
channel_model=constellation.GaussianChannel()
|
||||||
|
)
|
||||||
|
|
||||||
|
# List of training examples (not shuffled)
|
||||||
|
classes_ordered = torch.arange(order).repeat(batch_size)
|
||||||
|
|
||||||
|
# Constellation from the previous training batch
|
||||||
|
prev_constel = model.get_constellation()
|
||||||
|
total_change = float('inf')
|
||||||
|
|
||||||
|
# Optimizer settings
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=initial_learning_rate)
|
||||||
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||||
|
optimizer,
|
||||||
|
factor=0.25,
|
||||||
|
patience=100,
|
||||||
|
cooldown=50,
|
||||||
|
threshold=1e-8
|
||||||
|
)
|
||||||
|
|
||||||
|
while total_change >= 1e-4:
|
||||||
|
# Shuffle training data and convert to one-hot encoding
|
||||||
|
classes_dataset = classes_ordered[torch.randperm(len(classes_ordered))]
|
||||||
|
onehot_dataset = util.messages_to_onehot(classes_dataset, order)
|
||||||
|
|
||||||
|
# Perform training step for current batch
|
||||||
|
model.train()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
predictions = model(onehot_dataset)
|
||||||
|
loss = criterion(predictions, classes_dataset)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# Update learning rate scheduler
|
||||||
|
scheduler.step(loss)
|
||||||
|
|
||||||
|
# Check for convergence
|
||||||
|
model.eval()
|
||||||
|
cur_constel = model.get_constellation()
|
||||||
|
total_change = (cur_constel - prev_constel).norm(dim=1).sum()
|
||||||
|
prev_constel = cur_constel
|
||||||
|
|
||||||
|
# Compute final loss value
|
||||||
|
with torch.no_grad():
|
||||||
|
classes_ordered = torch.arange(order).repeat(2048)
|
||||||
|
classes_dataset = classes_ordered[torch.randperm(len(classes_ordered))]
|
||||||
|
onehot_dataset = util.messages_to_onehot(classes_dataset, order)
|
||||||
|
|
||||||
|
predictions = model(onehot_dataset)
|
||||||
|
return criterion(predictions, classes_dataset).tolist()
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_parameters(parameters, num_repeats=3):
|
||||||
|
"""
|
||||||
|
Run constellation training several times and keep the lowest reached loss.
|
||||||
|
|
||||||
|
:param parameters: Training parameters (see `train_with_parameters` for
|
||||||
|
documentation).
|
||||||
|
:param num_repeats: Number of runs.
|
||||||
|
:return: Lowest reached loss.
|
||||||
|
"""
|
||||||
|
minimal_loss = float('inf')
|
||||||
|
|
||||||
|
for run_index in range(num_repeats):
|
||||||
|
current_loss = train_with_parameters(**parameters)
|
||||||
|
minimal_loss = min(minimal_loss, current_loss)
|
||||||
|
|
||||||
|
return minimal_loss
|
||||||
|
|
||||||
|
|
||||||
|
def generate_test_configurations():
|
||||||
|
"""
|
||||||
|
Generate the set of all configurations to be tested.
|
||||||
|
|
||||||
|
:yield: Configuration as a dictionary of parameters.
|
||||||
|
"""
|
||||||
|
# Cartesian product of independent variables
|
||||||
|
independent_vars = util.product_dict(
|
||||||
|
order=[4, 16, 32],
|
||||||
|
initial_learning_rate=[10 ** x for x in range(-2, 1)],
|
||||||
|
batch_size=[8, 2048],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add dependent variables
|
||||||
|
for current_dict in independent_vars:
|
||||||
|
for first_layer in range(0, current_dict['order'] + 1, 4):
|
||||||
|
for last_layer in range(0, first_layer + 1, 4):
|
||||||
|
# Convert pair of sizes for each layer to a shape tuple
|
||||||
|
if first_layer == 0 and last_layer == 0:
|
||||||
|
layer_sizes = ()
|
||||||
|
elif first_layer != 0 and last_layer == 0:
|
||||||
|
layer_sizes = (first_layer,)
|
||||||
|
elif first_layer == 0 and last_layer != 0:
|
||||||
|
layer_sizes = (last_layer,)
|
||||||
|
else: # first_layer != 0 and last_layer != 0
|
||||||
|
layer_sizes = (first_layer, last_layer)
|
||||||
|
|
||||||
|
# Merge dependent variables with independent ones
|
||||||
|
yield {
|
||||||
|
**current_dict,
|
||||||
|
'layer_sizes': layer_sizes
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(results, path):
|
||||||
|
"""
|
||||||
|
Save current results of experiment.
|
||||||
|
|
||||||
|
:param results: Dictionary containing current results.
|
||||||
|
:param path: Path to the file where results are to be saved.
|
||||||
|
"""
|
||||||
|
with open(path, 'wb') as file:
|
||||||
|
pickle.dump(results, file, pickle.HIGHEST_PROTOCOL)
|
||||||
|
|
||||||
|
|
||||||
|
# Current set of results
|
||||||
|
results = {}
|
||||||
|
|
||||||
|
# Go through all configurations to be tested
|
||||||
|
all_confs = list(generate_test_configurations())
|
||||||
|
|
||||||
|
# Last checkpoint save time
|
||||||
|
last_save_time = 0
|
||||||
|
|
||||||
|
for conf in all_confs:
|
||||||
|
key = tuple(sorted(conf.items()))
|
||||||
|
results[key] = evaluate_parameters(conf)
|
||||||
|
|
||||||
|
print('{}/{} configurations tested ({:.1f} %)'.format(
|
||||||
|
len(results),
|
||||||
|
len(all_confs),
|
||||||
|
100 * len(results) / len(all_confs),
|
||||||
|
))
|
||||||
|
|
||||||
|
current_time = math.floor(time.time())
|
||||||
|
|
||||||
|
if current_time - last_save_time >= time_between_checkpoints:
|
||||||
|
current_path = checkpoint_path.format(current_time)
|
||||||
|
save_results(results, current_path)
|
||||||
|
print('Saved checkpoint to {}'.format(current_path))
|
||||||
|
last_save_time = current_time
|
||||||
|
|
||||||
|
# Save final checkpoint
|
||||||
|
output_path = checkpoint_path.format('final')
|
||||||
|
save_results(results, output_path)
|
||||||
|
print('Saved results to {}'.format(output_path))
|
Loading…
Reference in New Issue