Add experiment code
This commit is contained in:
parent
7efcbd3948
commit
0dfbed1bb7
|
@ -0,0 +1,184 @@
|
|||
import constellation
|
||||
from constellation import util
|
||||
import math
|
||||
import torch
|
||||
import time
|
||||
import pickle
|
||||
|
||||
# Number of seconds to wait between each checkpoint
|
||||
time_between_checkpoints = 10 * 60 # 10 minutes
|
||||
|
||||
# Format for checkpoint files
|
||||
checkpoint_path = 'output/experiment-{}.pkl'
|
||||
|
||||
|
||||
def train_with_parameters(
|
||||
order,
|
||||
layer_sizes,
|
||||
initial_learning_rate,
|
||||
batch_size
|
||||
):
|
||||
"""
|
||||
Report final loss after fully learning a constellation with given
|
||||
parameters.
|
||||
|
||||
:param order: Number of symbols in the constellation.
|
||||
:param layer_sizes: Shape of the encoder’s hidden layers. The
|
||||
size of this sequence is the number of hidden layers, with each element
|
||||
being a number which specifies the number of neurons in its channel. The
|
||||
decoder’s hidden layers will be of the same shape but reversed.
|
||||
:param initial_learning_rate: Initial learning rate used for the optimizer.
|
||||
:param batch_size: Number of training examples for each training batch
|
||||
expressed as a multiple of the constellation order.
|
||||
"""
|
||||
model = constellation.ConstellationNet(
|
||||
order=order,
|
||||
encoder_layers_sizes=layer_sizes,
|
||||
decoder_layers_sizes=layer_sizes[::-1],
|
||||
channel_model=constellation.GaussianChannel()
|
||||
)
|
||||
|
||||
# List of training examples (not shuffled)
|
||||
classes_ordered = torch.arange(order).repeat(batch_size)
|
||||
|
||||
# Constellation from the previous training batch
|
||||
prev_constel = model.get_constellation()
|
||||
total_change = float('inf')
|
||||
|
||||
# Optimizer settings
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=initial_learning_rate)
|
||||
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
|
||||
optimizer,
|
||||
factor=0.25,
|
||||
patience=100,
|
||||
cooldown=50,
|
||||
threshold=1e-8
|
||||
)
|
||||
|
||||
while total_change >= 1e-4:
|
||||
# Shuffle training data and convert to one-hot encoding
|
||||
classes_dataset = classes_ordered[torch.randperm(len(classes_ordered))]
|
||||
onehot_dataset = util.messages_to_onehot(classes_dataset, order)
|
||||
|
||||
# Perform training step for current batch
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
predictions = model(onehot_dataset)
|
||||
loss = criterion(predictions, classes_dataset)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# Update learning rate scheduler
|
||||
scheduler.step(loss)
|
||||
|
||||
# Check for convergence
|
||||
model.eval()
|
||||
cur_constel = model.get_constellation()
|
||||
total_change = (cur_constel - prev_constel).norm(dim=1).sum()
|
||||
prev_constel = cur_constel
|
||||
|
||||
# Compute final loss value
|
||||
with torch.no_grad():
|
||||
classes_ordered = torch.arange(order).repeat(2048)
|
||||
classes_dataset = classes_ordered[torch.randperm(len(classes_ordered))]
|
||||
onehot_dataset = util.messages_to_onehot(classes_dataset, order)
|
||||
|
||||
predictions = model(onehot_dataset)
|
||||
return criterion(predictions, classes_dataset).tolist()
|
||||
|
||||
|
||||
def evaluate_parameters(parameters, num_repeats=3):
|
||||
"""
|
||||
Run constellation training several times and keep the lowest reached loss.
|
||||
|
||||
:param parameters: Training parameters (see `train_with_parameters` for
|
||||
documentation).
|
||||
:param num_repeats: Number of runs.
|
||||
:return: Lowest reached loss.
|
||||
"""
|
||||
minimal_loss = float('inf')
|
||||
|
||||
for run_index in range(num_repeats):
|
||||
current_loss = train_with_parameters(**parameters)
|
||||
minimal_loss = min(minimal_loss, current_loss)
|
||||
|
||||
return minimal_loss
|
||||
|
||||
|
||||
def generate_test_configurations():
|
||||
"""
|
||||
Generate the set of all configurations to be tested.
|
||||
|
||||
:yield: Configuration as a dictionary of parameters.
|
||||
"""
|
||||
# Cartesian product of independent variables
|
||||
independent_vars = util.product_dict(
|
||||
order=[4, 16, 32],
|
||||
initial_learning_rate=[10 ** x for x in range(-2, 1)],
|
||||
batch_size=[8, 2048],
|
||||
)
|
||||
|
||||
# Add dependent variables
|
||||
for current_dict in independent_vars:
|
||||
for first_layer in range(0, current_dict['order'] + 1, 4):
|
||||
for last_layer in range(0, first_layer + 1, 4):
|
||||
# Convert pair of sizes for each layer to a shape tuple
|
||||
if first_layer == 0 and last_layer == 0:
|
||||
layer_sizes = ()
|
||||
elif first_layer != 0 and last_layer == 0:
|
||||
layer_sizes = (first_layer,)
|
||||
elif first_layer == 0 and last_layer != 0:
|
||||
layer_sizes = (last_layer,)
|
||||
else: # first_layer != 0 and last_layer != 0
|
||||
layer_sizes = (first_layer, last_layer)
|
||||
|
||||
# Merge dependent variables with independent ones
|
||||
yield {
|
||||
**current_dict,
|
||||
'layer_sizes': layer_sizes
|
||||
}
|
||||
|
||||
|
||||
def save_results(results, path):
|
||||
"""
|
||||
Save current results of experiment.
|
||||
|
||||
:param results: Dictionary containing current results.
|
||||
:param path: Path to the file where results are to be saved.
|
||||
"""
|
||||
with open(path, 'wb') as file:
|
||||
pickle.dump(results, file, pickle.HIGHEST_PROTOCOL)
|
||||
|
||||
|
||||
# Current set of results
|
||||
results = {}
|
||||
|
||||
# Go through all configurations to be tested
|
||||
all_confs = list(generate_test_configurations())
|
||||
|
||||
# Last checkpoint save time
|
||||
last_save_time = 0
|
||||
|
||||
for conf in all_confs:
|
||||
key = tuple(sorted(conf.items()))
|
||||
results[key] = evaluate_parameters(conf)
|
||||
|
||||
print('{}/{} configurations tested ({:.1f} %)'.format(
|
||||
len(results),
|
||||
len(all_confs),
|
||||
100 * len(results) / len(all_confs),
|
||||
))
|
||||
|
||||
current_time = math.floor(time.time())
|
||||
|
||||
if current_time - last_save_time >= time_between_checkpoints:
|
||||
current_path = checkpoint_path.format(current_time)
|
||||
save_results(results, current_path)
|
||||
print('Saved checkpoint to {}'.format(current_path))
|
||||
last_save_time = current_time
|
||||
|
||||
# Save final checkpoint
|
||||
output_path = checkpoint_path.format('final')
|
||||
save_results(results, output_path)
|
||||
print('Saved results to {}'.format(output_path))
|
Loading…
Reference in New Issue