Add initial implementation
This commit is contained in:
parent
7463e9fe5b
commit
2af8354a07
|
@ -0,0 +1 @@
|
||||||
|
__pycache__
|
|
@ -0,0 +1,78 @@
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class ConstellationNet(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
order=2,
|
||||||
|
encoder_layers_sizes=(),
|
||||||
|
decoder_layers_sizes=()
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Create an encoder-decoder network to automatically shape a
|
||||||
|
constellation of symbols for efficient communication over an optical
|
||||||
|
fiber channel.
|
||||||
|
|
||||||
|
:param order: Order of the constellation, i.e. the number of messages
|
||||||
|
that are to be transmitted or equivalently the number of symbols whose
|
||||||
|
placements in the constellation have to be learned.
|
||||||
|
:param encoder_layers_sizes: Shape of the encoder’s hidden layers. The
|
||||||
|
size of this sequence is the number of hidden layers, with each element
|
||||||
|
being a number which specifies the number of neurons in its channel.
|
||||||
|
:param decoder_layers_sizes: Shape of the decoder’s hidden layers. Uses
|
||||||
|
the same convention as `encoder_layers_sizes` above.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
# Build the encoder network taking a one-hot encoded message as input
|
||||||
|
# and outputting an I/Q vector. The network additionally uses hidden
|
||||||
|
# layers as specified in `encoder_layers_sizes`
|
||||||
|
prev_layer_size = order
|
||||||
|
encoder_layers = []
|
||||||
|
|
||||||
|
for layer_size in encoder_layers_sizes:
|
||||||
|
encoder_layers.append(nn.Linear(prev_layer_size, layer_size))
|
||||||
|
encoder_layers.append(nn.ReLU())
|
||||||
|
prev_layer_size = layer_size
|
||||||
|
|
||||||
|
encoder_layers += [
|
||||||
|
nn.Linear(prev_layer_size, 2),
|
||||||
|
nn.ReLU(),
|
||||||
|
# TODO: Normalization step
|
||||||
|
]
|
||||||
|
|
||||||
|
self.encoder = nn.Sequential(*encoder_layers)
|
||||||
|
|
||||||
|
# TODO: Add real channel model
|
||||||
|
self.channel = nn.Identity()
|
||||||
|
|
||||||
|
# Build the decoder network taking the noisy I/Q vector received from
|
||||||
|
# the channel as input and outputting a probability vector for each
|
||||||
|
# original message. The network additionally uses hidden layers as
|
||||||
|
# specified in `decoder_layers_sizes`
|
||||||
|
prev_layer_size = 2
|
||||||
|
decoder_layers = []
|
||||||
|
|
||||||
|
for layer_size in decoder_layers_sizes:
|
||||||
|
decoder_layers.append(nn.Linear(prev_layer_size, layer_size))
|
||||||
|
decoder_layers.append(nn.ReLU())
|
||||||
|
prev_layer_size = layer_size
|
||||||
|
|
||||||
|
# Softmax is not used at the end of the network because the
|
||||||
|
# CrossEntropyLoss criterion is used for training, which includes
|
||||||
|
# LogSoftmax
|
||||||
|
decoder_layers.append(nn.Linear(prev_layer_size, order),)
|
||||||
|
|
||||||
|
self.decoder = nn.Sequential(*decoder_layers)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
Perform encoding and decoding of an input vector and compute its
|
||||||
|
reconstructed vector.
|
||||||
|
|
||||||
|
:param x: Original one-hot encoded data.
|
||||||
|
:return: Reconstructed vector.
|
||||||
|
"""
|
||||||
|
symbol = self.encoder(x)
|
||||||
|
noisy_symbol = self.channel(symbol)
|
||||||
|
return self.decoder(noisy_symbol)
|
|
@ -0,0 +1,47 @@
|
||||||
|
from ConstellationNet import ConstellationNet
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# Number of symbols to learn
|
||||||
|
order = 4
|
||||||
|
|
||||||
|
# Number of training examples in an epoch
|
||||||
|
epoch_size = 10000
|
||||||
|
|
||||||
|
# Number of epochs
|
||||||
|
num_epochs = 25000
|
||||||
|
|
||||||
|
# Number of epochs to skip between every loss report
|
||||||
|
loss_report_epoch_skip = 200
|
||||||
|
|
||||||
|
model = ConstellationNet(order=order)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
|
|
||||||
|
running_loss = 0
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
classes_dataset = torch.randint(0, order, (epoch_size,))
|
||||||
|
onehot_dataset = torch.nn.functional.one_hot(
|
||||||
|
classes_dataset,
|
||||||
|
num_classes=order
|
||||||
|
).float()
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
predictions = model(onehot_dataset)
|
||||||
|
loss = criterion(predictions, classes_dataset)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
# Report loss
|
||||||
|
running_loss += loss.item()
|
||||||
|
|
||||||
|
if epoch % loss_report_epoch_skip == loss_report_epoch_skip - 1:
|
||||||
|
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
|
||||||
|
print('Loss is {}'.format(running_loss))
|
||||||
|
running_loss = 0
|
||||||
|
|
||||||
|
# Test the model with class 1
|
||||||
|
print(model(torch.nn.functional.one_hot(torch.tensor(0), num_classes=order).float()))
|
||||||
|
|
||||||
|
# Test the model with class 2
|
||||||
|
print(model(torch.nn.functional.one_hot(torch.tensor(1), num_classes=order).float()))
|
Loading…
Reference in New Issue