Use ReLU with normalization
This commit is contained in:
parent
197a01e993
commit
6d31ab3a13
|
@ -36,12 +36,13 @@ class ConstellationNet(nn.Module):
|
|||
|
||||
for layer_size in encoder_layers_sizes:
|
||||
encoder_layers.append(nn.Linear(prev_layer_size, layer_size))
|
||||
encoder_layers.append(nn.Tanh())
|
||||
encoder_layers.append(nn.ReLU())
|
||||
prev_layer_size = layer_size
|
||||
|
||||
encoder_layers += [
|
||||
nn.Linear(prev_layer_size, 2),
|
||||
nn.Tanh(),
|
||||
nn.ReLU(),
|
||||
nn.BatchNorm1d(2),
|
||||
]
|
||||
|
||||
self.encoder = nn.Sequential(*encoder_layers)
|
||||
|
@ -56,7 +57,7 @@ class ConstellationNet(nn.Module):
|
|||
|
||||
for layer_size in decoder_layers_sizes:
|
||||
decoder_layers.append(nn.Linear(prev_layer_size, layer_size))
|
||||
decoder_layers.append(nn.Tanh())
|
||||
decoder_layers.append(nn.ReLU())
|
||||
prev_layer_size = layer_size
|
||||
|
||||
# Softmax is not used at the end of the network because the
|
||||
|
|
Loading…
Reference in New Issue