Use Tanh activation to preserve negative values
This commit is contained in:
		
							parent
							
								
									a01d83f339
								
							
						
					
					
						commit
						d0af8fc3da
					
				|  | @ -32,13 +32,12 @@ class ConstellationNet(nn.Module): | |||
| 
 | ||||
|         for layer_size in encoder_layers_sizes: | ||||
|             encoder_layers.append(nn.Linear(prev_layer_size, layer_size)) | ||||
|             encoder_layers.append(nn.ReLU()) | ||||
|             encoder_layers.append(nn.Tanh()) | ||||
|             prev_layer_size = layer_size | ||||
| 
 | ||||
|         encoder_layers += [ | ||||
|             nn.Linear(prev_layer_size, 2), | ||||
|             nn.ReLU(), | ||||
|             # TODO: Normalization step | ||||
|             nn.Tanh(), | ||||
|         ] | ||||
| 
 | ||||
|         self.encoder = nn.Sequential(*encoder_layers) | ||||
|  | @ -55,7 +54,7 @@ class ConstellationNet(nn.Module): | |||
| 
 | ||||
|         for layer_size in decoder_layers_sizes: | ||||
|             decoder_layers.append(nn.Linear(prev_layer_size, layer_size)) | ||||
|             decoder_layers.append(nn.ReLU()) | ||||
|             decoder_layers.append(nn.Tanh()) | ||||
|             prev_layer_size = layer_size | ||||
| 
 | ||||
|         # Softmax is not used at the end of the network because the | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue