Add Gaussian channel model
This commit is contained in:
parent
d0af8fc3da
commit
3b40e27070
|
@ -1 +1,2 @@
|
|||
__pycache__
|
||||
.ipynb_checkpoints
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import torch.nn as nn
|
||||
from .GaussianChannel import GaussianChannel
|
||||
|
||||
|
||||
class ConstellationNet(nn.Module):
|
||||
|
@ -6,7 +7,8 @@ class ConstellationNet(nn.Module):
|
|||
self,
|
||||
order=2,
|
||||
encoder_layers_sizes=(),
|
||||
decoder_layers_sizes=()
|
||||
decoder_layers_sizes=(),
|
||||
channel_model=GaussianChannel()
|
||||
):
|
||||
"""
|
||||
Create an encoder-decoder network to automatically shape a
|
||||
|
@ -14,13 +16,15 @@ class ConstellationNet(nn.Module):
|
|||
fiber channel.
|
||||
|
||||
:param order: Order of the constellation, i.e. the number of messages
|
||||
that are to be transmitted or equivalently the number of symbols whose
|
||||
that are to be transmitted, or equivalently the number of symbols whose
|
||||
placements in the constellation have to be learned.
|
||||
:param encoder_layers_sizes: Shape of the encoder’s hidden layers. The
|
||||
size of this sequence is the number of hidden layers, with each element
|
||||
being a number which specifies the number of neurons in its channel.
|
||||
:param decoder_layers_sizes: Shape of the decoder’s hidden layers. Uses
|
||||
the same convention as `encoder_layers_sizes` above.
|
||||
:param channel_model: Instance of the channel model to use between the
|
||||
encoder and decoder network.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
|
@ -41,9 +45,7 @@ class ConstellationNet(nn.Module):
|
|||
]
|
||||
|
||||
self.encoder = nn.Sequential(*encoder_layers)
|
||||
|
||||
# TODO: Add real channel model
|
||||
self.channel = nn.Identity()
|
||||
self.channel = channel_model
|
||||
|
||||
# Build the decoder network taking the noisy I/Q vector received from
|
||||
# the channel as input and outputting a probability vector for each
|
||||
|
@ -60,7 +62,7 @@ class ConstellationNet(nn.Module):
|
|||
# Softmax is not used at the end of the network because the
|
||||
# CrossEntropyLoss criterion is used for training, which includes
|
||||
# LogSoftmax
|
||||
decoder_layers.append(nn.Linear(prev_layer_size, order),)
|
||||
decoder_layers.append(nn.Linear(prev_layer_size, order))
|
||||
|
||||
self.decoder = nn.Sequential(*decoder_layers)
|
||||
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
import torch.nn as nn
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def channel_OSNR():
|
||||
Sys_rate = 32e9
|
||||
r = 0.05
|
||||
Dispersion = 16.48e-6
|
||||
B_2 = Dispersion
|
||||
Non_linear_index = 1.3e3
|
||||
Gam = Non_linear_index
|
||||
Loss = 10**20
|
||||
Alpha = Loss
|
||||
Span_count = 20
|
||||
N_s = Span_count
|
||||
Span_length = 10e5 # (km)
|
||||
L_s = Span_length
|
||||
Noise_figure = 10**0.5 # (dB)
|
||||
h = 6.6261e-34
|
||||
v = 299792458
|
||||
B_WDM = Sys_rate*(1+r)
|
||||
B_N = 0.1
|
||||
|
||||
P_ASE_1 = h*v*B_N*(Loss*Span_length*Noise_figure-1)
|
||||
P_ASE = P_ASE_1 * Span_count
|
||||
L_eff = 1-np.exp(-Loss*Span_length)/2/Alpha
|
||||
|
||||
eps = 0.3*np.log(1+(6/L_s)*(L_eff/np.arcsinh((np.pi**2/3)*B_2*L_eff*B_WDM**2)))
|
||||
b = P_ASE_1/(2*(N_s**eps)*B_N*(Gam**2)*L_eff*np.arcsinh((np.pi**2/3)*B_2*L_eff*B_WDM**2))
|
||||
P_ch = Sys_rate*(((27*np.pi*B_2/16)*b)**(1/3))
|
||||
OSNR = (2*P_ch/3/P_ASE)
|
||||
|
||||
OSNR_dB = 10*np.log10(OSNR)
|
||||
return OSNR_dB
|
||||
|
||||
|
||||
def Const_Points_Pow(IQ):
|
||||
"""
|
||||
Calculate the average power of a set of vectors.
|
||||
"""
|
||||
p_enc_avg = (torch.norm(IQ, dim=1) ** 2).mean()
|
||||
p_enc_avg_dB = 10 * torch.log10(p_enc_avg)
|
||||
return p_enc_avg_dB
|
||||
|
||||
|
||||
def Pow_Noise(CH_OSNR, CPP):
|
||||
"""
|
||||
Calculate the power of channel noise.
|
||||
"""
|
||||
P_N_dB = CPP - CH_OSNR
|
||||
p_N_watt = 10**(P_N_dB/10)
|
||||
Var_Noise = p_N_watt
|
||||
return Var_Noise
|
||||
|
||||
|
||||
def Channel_Noise_Model(NV, S):
|
||||
"""
|
||||
Compute the Gaussian noise to be added to each vector to simulate passing
|
||||
through a channel.
|
||||
"""
|
||||
return torch.distributions.normal.Normal(
|
||||
0, torch.sqrt(NV*5000)
|
||||
).sample(S)
|
||||
|
||||
|
||||
class GaussianChannel(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
Noise_Variance = Pow_Noise(channel_OSNR(), Const_Points_Pow(x))
|
||||
Noise_Volts = Channel_Noise_Model(Noise_Variance, [len(x), 2])
|
||||
return x + Noise_Volts
|
|
@ -1,2 +1,3 @@
|
|||
from constellation.ConstellationNet import ConstellationNet
|
||||
from constellation.GaussianChannel import GaussianChannel
|
||||
import constellation.util
|
||||
|
|
14
plot.py
14
plot.py
|
@ -3,17 +3,23 @@ from constellation import util
|
|||
import torch
|
||||
from matplotlib import pyplot
|
||||
from mpl_toolkits.axisartist.axislines import SubplotZero
|
||||
import math
|
||||
import numpy
|
||||
|
||||
# Number learned symbols
|
||||
order = 4
|
||||
|
||||
# File in which the trained model is saved
|
||||
input_file = 'output/constellation-order-{}.tc'.format(order)
|
||||
input_file = 'output/constellation-order-{}.pth'.format(order)
|
||||
|
||||
# Restore model from file
|
||||
model = constellation.ConstellationNet(
|
||||
order=order,
|
||||
encoder_layers_sizes=(4,),
|
||||
decoder_layers_sizes=(4,),
|
||||
channel_model=constellation.GaussianChannel()
|
||||
)
|
||||
|
||||
model = constellation.ConstellationNet(order=order)
|
||||
model.load_state_dict(torch.load(input_file))
|
||||
model.eval()
|
||||
|
||||
# Compute encoded vectors
|
||||
with torch.no_grad():
|
||||
|
|
9
train.py
9
train.py
|
@ -15,9 +15,14 @@ num_epochs = 20000
|
|||
loss_report_epoch_skip = 500
|
||||
|
||||
# File in which the trained model is saved
|
||||
output_file = 'output/constellation-order-{}.tc'.format(order)
|
||||
output_file = 'output/constellation-order-{}.pth'.format(order)
|
||||
|
||||
model = constellation.ConstellationNet(order=order)
|
||||
model = constellation.ConstellationNet(
|
||||
order=order,
|
||||
encoder_layers_sizes=(4,),
|
||||
decoder_layers_sizes=(4,),
|
||||
channel_model=constellation.GaussianChannel()
|
||||
)
|
||||
|
||||
# Train the model with random data
|
||||
model.train()
|
||||
|
|
Loading…
Reference in New Issue